- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bortolas, Elisa (2)
-
Amaro-Seoane, Pau (1)
-
Andrews, Jeff (1)
-
Antonini, Fabio (1)
-
Arca Sedda, Manuel (1)
-
Askar, Abbas (1)
-
Baghi, Quentin (1)
-
Baibhav, Vishal (1)
-
Balasov, Razvan (1)
-
Barausse, Enrico (1)
-
Bartos, Imre (1)
-
Bavera, Simone S. (1)
-
Bellovary, Jillian (1)
-
Berry, Christopher P. (1)
-
Berti, Emanuele (1)
-
Bianchi, Stefano (1)
-
Blecha, Laura (1)
-
Blondin, Stéphane (1)
-
Bogdanović, Tamara (1)
-
Boissier, Samuel (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Intermediate-mass black holes (IMBHs) may be the link between stellar mass holes and the supermassive variety in the nuclei of galaxies, and globular clusters (GCs) may be one of the most promising environments for their formation. Here, we carry out a pilot study of the observability of tidal disruption events (TDEs) from 103M⊙<M•< 105M⊙IMBHs embedded in stellar cusps at the center of GCs. We model the long super-Eddington accretion phase and ensuing optical flare, and derive the disruption rate of main-sequence stars as a function of black hole mass and GC properties with the help of a 1D Fokker–Planck approach. The photospheric emission of the adiabatically expanding outflow dominates the observable radiation and peaks in the near-ultraviolet/optical bands, outshining the brightness of the (old) stellar population of GCs in Virgo for a period of months to years. A search for TDE events in a sample of nearly 4000 GCs observed at multiple epochs by the Next Generation Virgo Cluster Survey yields null results. Given our model predictions, this sample is too small to set stringent constraints on the present-day occupation fraction of GCs hosting IMBHs. Naturally, better simulations of the properties of the cluster central stellar distribution, TDE light curves, and rates, together with larger surveys of GCs are all needed to gain deeper insights into the presence of IMBHs in GCs.more » « less
-
Amaro-Seoane, Pau; Andrews, Jeff; Arca Sedda, Manuel; Askar, Abbas; Baghi, Quentin; Balasov, Razvan; Bartos, Imre; Bavera, Simone S.; Bellovary, Jillian; Berry, Christopher P.; et al (, Living Reviews in Relativity)Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.more » « less
An official website of the United States government
